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The particularity of the gauge gravitation theory is that Dirac fermion fields 
possess only Lorentz exact symmetries. It follows that different tetrad gravita- 
tional fields h define nonisomorphic representations Yh of cotangent vectors to 
a space-time manifold X 4 by Dirac's y-matrices on fermion fields. One needs 
these representations in order to construct the Dirac operator defined in terms 
of jet spaces. As a consequence, gravitational fields h fail to form an affine space 
modeled after any vector space of deviations h ' -  h of some background field h. 
They therefore fail to be quantized in accordance with the familiar quantum 
field theory. At the same time, deformations of representation Yh describe 
deviations ~7 of h such that h + o- is not a gravitational field. These deviations 
form a vector space, i.e., satisfy the superposition principle. Their Lagrangian, 
however, differs from familiar Lagrangians of gravitation theory. For instance, 
it contains masslike terms. 

1. I N T R O D U C T I O N  

A gauge theory of space-t ime symmetries  is reduced to the gauge theory 

of  gravity by spon taneous  symmetry  breaking  based on the fact that  mat ter  
fields are Dirac  fermion fields ( Ivanenko  and  Sardanashvi ly ,  1983; Sar- 

danashvi ly  and  Zakharov ,  19 89). There are var ious sp inor  models  of  fe rmion  
matter.  All observable  fe rmion  particles are Dirac  fermions on  which the 
Clifford algebra of Dirac ' s  y-matr ices  and  the Dirac  opera tor  act. In  fiber 
bund le  terms, this means  the following. 

Let A be a sp inor  b u n d l e  whose sections describe Dirac  fe rmion  fields 

4~. There is a vector fiber bund le  AM with the structure Lorentz group 
L = S 0 ( 3 ,  1) and  the s tandard  fiber which is the Minkowski  space M so 
that  the fiber-to-fiber morph i sm 

AM ~)A ---~ A 
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exists and defines the representation of  elements of A~ by Dirac's y-matrices 
on 4~. It is a key point that, to define the Dirac operator on ~b, one must 
require AM to be isomorphic to the cotangent bundle T*X over a space-time 
manifold X 4. Since the structure group of  this bundle is GL4 = GL+(4, •), 
such isomorphism takes place only in the following case. Given the principal 
linear frame bundle LX associated with T 'X ,  there is some reduced L- 
subbundle LhX of LX associated with AM, that is, the equivalence principle 
holds. The corresponding tetrad gravitational field h turns T*X into the 
fiber bundle in Minkowski space and yields the representation Yh of 
cotangent vectors to X 4 (i.e., differential 1-forms on X 4) by Dirac's y- 
matrices on sections of h. These sections thereby describe Dirac fermion 
fields ~bh in the presence of  the gravitational field h. The Higgs character 
of gravity issues from the fact that different gravitational fields h and h' 
define nonisomorphic representations yh and Yh'- It follows that fermion 
fields must be considered only in a pair with a certain gravitational field. 
These pairs can be described by means of  a spinor bundle over a generalized 
coordinate space X 4 x  (GL4/L). As a consequence, gravitational fields fail 
to form a vector space or an affine space modeled after any vector space 
of  deviations of some background gravitational field, and so do not satisfy 
the superposition principle and therefore cannot be quantized in accordance 
with the conventional quantum field theory. 

At the same time, one can consider deviations cr of h such that h + cr 
is not a gravitational field (Sardanashvily and Zakharov, 1989). Such devi- 
ations are generated by non-Lorentz transformations of  fibers of T*X. The 
Dirac operator in the presence of deviations o" looks like that on a deformed 
manifold in the gauge theory of  space-time translations (Sardanashvily and 
Gogberashvily, 1988; Sardanashvily, 1990). We use the Lagrangian of this 
theory in order to describe deviations or. This Lagrangian differs from 
familiar Lagrangians of gravitation theory. 

We assume that X 4 is an oriented paracompact  connected smooth 
manifold and that it obeys the well-known topological conditions for the 
structure group of LX to be reducible to the Lorentz group L and can be 
extended to the structure group of a spinor fiber bundle. 

2. GAUGE THEORY 

In fiber bundle terms, matter fields ~b are identified with global sections 
of  a differentiable vector bundle 

A = (d;~, ~ ,  X, V,G) 

with a total space tlA, a base manifold X 4, canonical projection 

7rA: tlA-~ X 
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a standard fiber V, and a structure Lie group G. We shall call A a matter  
fiber bundle. Given the associated principal fiber bundle 

A=(p~ ,  ~ ,X ,  G) 

with a total space PA, the total space tlA of A is defined to be the quotient 
(PA x V) /G of PaX V by identification of elements (p x v)~  PA x V with 
(pg, g-iv) for all g ~ (3. A section O of A is then determined by a V-valued 
equivariant function f ,  on PA such that 

O(~r(p))=[p]vfo(p) ' f~(pg) g-lf,~(p), P~PA, g ~ G  

where [Ply is the restriction of  the canonical map PA x V~tIA to the 
subspace p x V. 

Given a connection A in A with a connection 1-form A on PA, the 
covariant differential DO of  sections r of  A is defined as follows. For every 
vector field ~" on X and its horizontal lift r n on PA [i.e., ~r.(z n)  = r ,  
A ( r  H) = 0 where 7r. is the tangent map to 7r], the equivariant function , n f ,  
on PA corresponds to the section 

D,O = (DO)(z)  

of  h, which is the covariant derivative of  r along ~'. 
A Lagrangian L6 of  matter  fields r is defined to be a real function on 

the jet manifold J1A of  the fiber bundle A (Mangiarotti  and Modugno,  
1990). Elements of  J1A are equivalent classes j~O, x ~ X, of  sections r such 
that O and 0 '  belong to the same class J~0  if and only if 

r  = O'(x) ,  O-IT;, = O ' l~ ; ,  

where TxX is a tangent space to X at x ~ X. Given a connection A in A, 
the covariant differential DO of  O yields the mapping  

J,A -+ tl( T*X  | A ) (1) 

where T * X  is a cotangent bundle. Coordinate  atlases which define the 
structure of  a differentiable manifold on J~A are induced by atlases of  A 
and TX. The gauge principle requires a matter  field Lagrangian to be 
invariant by transformations of  these atlases. 

We denote an atlas of  A by q*a={Ui,  4'}}, where {U~} and g,} are 
respectively an open covering of X and morphisms of trivialization of A. 
An atlas ',I *a determines some reference frame in the sense that a section O 
of  A can be expressed by a family of  V-valued functions 

O,(x) = O~(x)O(x),  x e U, 

with respect to ~a.  Given the associated principal fiber bundle A, we shall 
say that, for the same covering { U~}, an atlas ',ItA= { U~, ~b)} of  A and an 
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atlas ~ = { U~, qJ~} of A are associated if they are determined by the same 
family {z~} of  local sections of  A, that is, 

zA(zr(p))=p( tP{p)  -1, O~(X)=[Z{(X)]v ~ , ~r(p) = x ~ Ug 

For instance, with respect to associated atlases ~tIfa and ~ ,  

~i(X) = [ziA(X)]v16(X) =f6(zA(x)), X ~ Ui 

D&i = ( d - A,)ch, 

where Ai = (z~)*A is a local connection 1-form whose coefficients are treated 
as gauge potentials. 

An atlas ~ r =  { Ui, Of} of  the tangent bundle determines some space- 
t ime reference frame so that, given a fixed basis {t} for the standard fiber 
T = N 4 of  TX, the vierbein 

{ t ia (X)}  = ( ~ T i ( X ) ) - ' { t a } ,  X C Ui 

associated with the atlas 9 T is erected at every point x ~ X. The vierbein 
functions t~(x) play the role of  local sections z~(x) of  the principal fiber 
bundle LX. Atlases of  the tangent bundle are equivalent to holonomic atlases 

W r = { U,, OT = (X,)*} 

correlating with coordinate atlases ~x---{U~,x~} of X. The associated 
vierbeins t~(x)= 0 N are then oriented along coordinate curves. 

Given a coordinate atlas ~ x ,  a holonomic atlas ~T, and an atlas ~A, 
the jet manifold Jah can be provided with local coordinates (x~, Va, Va~,) 
where VA are coordinates in V with respect to some basis {v A} for V. For 
instance, a field ~b(x) belongs to the classes j~b,  x ~ X, with coordinates 

(X" ,  1) A ~" ~)A(X),  I.)At ~ "~" OIx~)A(X)) 

and the mapping  (1) reads 

( XH', I')A, rAta.)--) (X tx, ( V A v -  AfA(X)VB))  

where A f A  are components  of  the local connection 1-form. 

3 .  D I R A C  F E R M I O N  F I E L D S  

We examine the case of  Dirac fermion fields. 
Let M be a Minkowski space with the Minkowski metric T/. Consider 

the tensor algebra 

A M ~ M", M ~ = R, M ">~ - + = - M 
n 



Gauge Gravitation Theory 725 

of  M. The complexified quotient of this algebra by the two-sided ideal 
generated by elements 

e | 1 7 4  e ~ M  

forms the complex Clifford algebra C1,3. A spinor space V is defined to be 
a linear space of  some minimal left ideal of  C1,3 on which this algebra acts 
on the left (Bugajska, 1986; Rodrigues and Figueiredo, 1990). We then have 
the representation 

y: M |  V ~  V (2) 

of  elements of  the Minkowski space M c C1,3 by y-matrices on V: 

~al)A ~_ ,y( ea @ v  A) = ~/aABI)B 

where {e ~} is a fixed basis for M, {v A} is a fixed basis for V, and yo are 
Dirac's matrices of a fixed form. 

Consider transformations which preserve representation (2). These are 
pairs (l, Is) of Lorentz transformations l of the Minkowski space M and 
invertible elements ls of  C~,3 such that 

BVI = l, m lT ' ,  y ( IM|  = I s y ( m |  V) (3) 

These elements ls form the Clifford group G~,3. Action (3) of  this group on 
M, however, is not effective. We restrict ourselves to the spinor subgroup 
L~ c G~,3 keeping the standard Hermitian form on V, that is, L = Ls/Z2. 

Let AM he a fiber bundle with the structure group L, the standard fiber 
M, and the base X 4 so that the principal fiber bundle AM associated with 
AM can be extended to a principal fiber bundle 

a = ( P s ,  m X 4 ,  Ls) 

with the structure group Ls: 

tIAM = Ps/Z2, tlAM = (tlAM • M ) / L  = (P~ x M ) / L ,  

Let A = (~rA, X, V, Ls) be a fiber bundle associated with A. One can define 
the morphism 

%: tl(A~4 |  = (P~ • ( M |  V))/L~ ~ (P~ • y ( M |  V))/L~ = tlA 

With respect to atlases ~Ma of AM and ~a  of A associated with atlases 
~ = {zT} of  A and ~ = {z, M = z~/Z2} of  AM, this morphism reads 

e a ( x ) v A ( x )  = 7a(e~(x) |  = "yaAB?i.)B(X), X E U i 

Here 

{e"(x)} = {(qjyA(x))-le~), {vA(x) = (O)(X))- 'V A} 
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are bases for fibers Mx and Vx of  fiber bundles AM and A, which are 
associated with atlases ~Ma and ~a,  respectively. 

Dirac fermion fields are described by global sections of the fiber bundle 
A provided with the representation morphism yA which yields the representa- 
tion of  sections of A~a by y-matrices on ~b. To define the Dirac operator on 
these fields, one must require A~a to be isomorphic to the cotangent bundle 
T*X over X 4. This takes place only if the principal fiber bundle 

L X = ( P ,  7rpx, X, GL4, Xt t) 

contains a reduced subbundle LhX with the structure group L. 

4. GRAVITATIONAL FIELD 

There is 1 : 1 correspondence between global sections h of the associated 
fiber bundle 

he = (~,, "rrBx, GL4/ L, GL,,) 

with the standard fiber GL4/L (we call h a tetrad field) and reduced 
L-subbundles Lhx of  LX so that 

.lrpEph = h(,rrpxph), ph = tlLhX 

where r is the canonical projection of P onto E = tIA~ = P/L.  
The fiber bundle hE is isomorphic to the fiber bundle of pseudo- 

Euclidean bilinear forms in cotangent spaces T*X to X. A global section 
of  this bundle is a pseudo-Riemannian metric g on X. A metric g can be 
represented as a nonvanishing global section of the tensor fiber bundle 
TX | TX. 

Given h and Lhx,  let {z h} be a family of local sections of LX with 
values into ph. These sections define an atlas ~h of LX such that its 
transition functions are L-valued and, with respect to the associated atlas 
~ h r  of  TX, metric functions of g come to the Minkowski metric: 

gi = ~blhrg = rl 

If  one provides the cotangent bundle T*X with the fiber metric g and 
considers only atlases ~h, this fiber bundle is endowed with the structure 
of  an L fiber bundle M h x  in Minkowski spaces, that is, 

tlT*X = ( P x  T*)/ GL4= (ph X M) /  L 

For different h and h', fiber bundles M h x  and Mh'x  are not isomorphic. 
Their fibers Mx and M"  are cotangent spaces T ' X ,  but provided with 
different Minkowski space structures. 

Since 

h(x) = lrp~(zh(x)) 
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given the atlas ~h and some holonomic atlas �9 of  LX, the tetrad field h 
can be uniquely represented by the family of  tetrad functions 

h,(x)  = 4 , , ( x ) d ( x )  = [ z ; (x ) ]  -1 h T [z , ( x ) ]T ,  x c  U, 

Tetrad functions define gauge transformations of an atlas 

~ h ~  = { v , ,  q , ~  = [ d ( x ) ] ~ ' }  

into the holonomic atlas 

~jT  : { Vi ' ~ tT(x  ) = [ z i ( x ) ] ~ l  ~_- hi (x )~ jh iT(x)}  

In the index form, tetrad functions (4) describe transformations 

tha(X) --= ( ~ h T ( x )  ) - l l a  = ( ~tT(x) )- 'h~(x)t  ~ 

= h~(x)(Of(x))-'t~, 

= h~(x )  G ,  x e G 

between bases {0.} and { th(x)} for tangent spaces and between the dual bases 

{dx'} = {h~(x)tha(x)} 

for cotangent spaces T ' X ,  which are associated with atlases 't t and grh 
respectively. For instance, 

ab 
gi -- hi'q, gU'(x) = h a ( x ) h b ( x ) ' r l  

We say that a spinor fiber bundle Ah describes Dirac fermion fields (~h 
in the presence of  a gravitational field h if the principal fiber bundle A 
associated with Ah is the Ls-extension of  the reduced L-subbundle AM = 
LhXo In this case, the fiber bundle AM is the cotangent bundle T*X  con- 
sidered as the L fiber bundle MhX. We then can define the representation 

yh: t l(T*X@Ah) = (ph X ( M |  V)/Z2)/L--> ( t /Ax y ( M |  V))/L,  = tlAh 

of  cotangent vectors to X by Dirac's matrices on elements of Ah. With 
respect to an atlas ~I ts = { U~, z~} of  A, associated atlases ~A of  Ah, 

,I, ~ = ( u,,  d ( x )  = ~7(x) /  Za} 

of  LX and ~hr,  the morphism Yh reads 

t h a ( x ) v A ( x )  = ~ l / h ( l h a ( x ) @ v A ( x ) )  = ,yaABvB(x  ) 

where {the(x)} and {vA(x)} are the corresponding bases for fibers T*X  
and V~. 

In jet bundle terms, one can define the Dirac operator 

LD = "gh D :  J1Ah -> tl( T*  X @ Ah ) -> tlAh 



728 Sardanashvily 

on fields tbh. With respect to an atlas ~h  and some holonomic atlas, this 
operator  reads 

^ 
/ L  a LD~ h = dx~'D~,q~h = h~a(X)'tha(x)Dtzqbh = ha(x)3~ D~b (4) 

where D ,  is the covariant derivative corresponding to some connection A 
in A. 

Fermion fields ~bh and ~bh,, are described by fiber bundles hh and hh', 
sO that the corresponding fiber bundles AM and h~4 are associated with 
different L-subbundles Lhx and L h ' x  of LX. Fibers Mx and M 2 of AM 
and h ~  are cotangent spaces T ' X ,  but provided with nonisomorphic  
structures of  the Minkowski space. We shall compare  representations % 
and 3/h'. 

For any two elements p e ph and p' c ph"  there is an element S c GL 4 
such that 

p' = pS, P~ = pL, P~'= p'L = pSL 

We then can write 

3/h: t x | 1 7 4 1 7 4  

3/h,: tx| v ' = [ p ' x ( s - ' t |  V/Z2)] /L-- ,[p 'x  3 / ( s - l t |  V)]/L~ = 3/h,(tx)V'~ 

I f  h ( x ) ~  h '(x) ,  we have S ~  GL4\L  and representations 3/h and 3/h' fail to 
be isomorphic in the sense that there is no isomorphism pv of the spinor 
space V such that 

3 / ( S - l M @ p v  V) = pv3 / (M|  V) 

For instance, if  zhi(x) =p  and zh'(x) =p' ,  one can write 

t (x )  = ~'a(x)th"(x) = [ zh (x )L  - '  • Lz~(X)t~]/  L 

= [z~'(x)L -1 x LS{ la . r , ( x ) tb] /L  = S~lara(x)th'6(X) 

where we span vierbeins th(x) and th'(x) by different indices a and a, since 
these indices correspond to different metrics on X 4. 

Since for different fields h and h', the representations 3/h and 3/h' are 
nonisomorphic,  Dirac fermion fields must be considered only in a pair with 
some gravitational field. A complex of such fermion-gravi tat ion pairs can 
be described in the following way. For the sake of  simplicity, we shall take 
the structure group of  a spinor fiber bundle to be L. 

The total space P of  the principal fiber bundle L X  is the total space 
of  the principal fiber bundle A c with the base E = P / L  and the structure 
Lorentz group L. Let 

,x L = (E,  v, L)  
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be a spinor fiber bundle associated with A L. The spinor fiber bundle Ah then 
can be described as the one induced from h L by injection h of X onto 
~'pE (P  h) in E. Therefore, each global section ~bL(cr) of h L, an atlas ~L, and 
a connection A L in A L define, respectively, some global section 

6n(x)=6L(h(x)) 
of An, an atlas gtA, and a connection A n in A. Conversely, for every h, there 
exists an open neighborhood Uz of  the subset h (X)  c E so that the portion 
A~ of  A L over Uh is the pullback of )th with respect to projection zrzx of 
Uh c E onto X. A global section ~bn of hn and a connection A h in A then 
induce the pullback section 

6 ~ ( ~ )  = 4,n0rEx(o-)), ~ G 

of  A~ and the pullback connection A L in A~. Remark that Uh # E, since 
the fiber bundle GL4-~ G L 4 / L  is not trivial. 

Thus, pullback sections ~b L and pullback connections A L can describe 
the above-mentioned fermion-gravitation complex. For instance, A L ( t ) =  0 
if  t are tangent vectors to fibers ~ r ~ ( x ) c  E, and there is an atlas qt~ of 
the fiber bundle A~ so that field functions ~b~ and A~ are constant on fibers 
~ r ~ ( x )  c E. This means that, for any h' [ h ' ( X ) c  Uh], there exist atlases 
~h and ~h'  of  L n X  and L n ' x  so that 

r = 6 ~ ( h ( x ) )  = 4)~(h'(x))  = 4)h,,(X), A ) = A) '  

One therefore can vary independently gravitational potentials and fermion 
field functions in a matter field Lagrangian. 

In terms of the fermion-gravitation complex, the Dirac operator can 
be described as follows. Let JiA L be the jet manifold of the fiber bundle 
A L. We define the operator 

/~D: JIA L-~ tlA L 

such that, given the coordinate system on jaAL induced by an atlas xI tL of 
A L and a holonomic atlas ~ this operator takes the form 

~ ~ a ' Y  A "t "aJ B o,  - -  zT t  t~  B tt~ C J 

Here, {x ", h$} are coordinates on the space E if an element o-~ G L 4 / L  is 
replaced by its representer in GL4. The Dirac operator (4) on fermion fields 
in the presence of a fixed gravitational field h is reproduced by restricting 
/-7,D to the subspace h (X)  c E. 

5. DEVIATIONS OF A GRAVITATIONAL FIELD 

In the conventional quantum field theory, to be quantized, fields must 
form a linear space, that is, they must satisfy the superposition principle. 
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By virtue of the specificity of a gravitational field h, tetrad functions 
h~(x)  are written with respect to atlases eg h defined by the field h itself. As 
a consequence, for different fields h and h', the indices a and ti of tetrad 
functions h~ and h "  always correspond to different reference frames wh 
and ~h', and they are paired by different metrics on X 4. Tetrad functions 
thereby do not satisfy the superposition principle, and their deviations 

Saha # ( ~  + ea)ha ,  S ~ G L 4 \ L  (5) 

fail to be defined. Thus, in contrast with gauge potentials, tetrad gravitational 
fields h fail to form an affine space modeled after any vector space of 
deviations from some background field, and therefore they cannot be 
quantized. 

If fermion fields are not considered, one usually chooses metric func- 
tions g"~ as gravitational potential variables. Their small superposal devi- 
ations can be defined: 

g,,~ = (Sg) ~ = (e~g) ,  ~ ~ g,~ + e(,") 
(6) 

g ~  ~ g ~  - g ~ g ~ e  (~m = g ~  - e (~)  

The metric function, however, fails to describe the space-time distributions 
which we need in quantum field theory. For different gravitational fields, 
there are space-time distributions which fail to be transformed into each 
other by Lorentz gauge transformations. Deviations of a gravitational field 
therefore cannot be neutralized by transformations of space-time distribu- 
tions, and superposition of gravitational fields is accompanied by that of 
space-time distributions. We face such superposition in the case of gravita- 
tional singularities of the caustic type (Sardanashvily and Yanchevskj, 1986). 

We thus may conclude that superposal (quantum) deviations h = h + tr 
of a geometrized gravitational field h (or g) cannot be geometrized fields 
which, for instance, would change reference frames wh defined by h. This 
is the characteristic feature of Higgs fields. In the axiomatic quantum field 
theory, different Higgs fields define nonequivalent representations of an 
algebra of matter fields. Quantum deviations of a Higgs field do not change 
a representation of this algebra, and so fail to result in some new Higgs field. 

Tetrad functions h~ in the Dirac operator (4) admit the following 
superposal deviations: 

h~=H,~bh~=(~Sb+o' ,~b)h~=H,,~h~=(8~+crv~)h~=h~+cra ~ (7) 

= " ~  ~ ( 8 )  Lo  h .  Y Dr  

where/~ is not a tetrad function because, in comparison with the expression 
(5), both indices a and b of Ha b correspond to the same reference frame 
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associated with ~h. In contrast with tetrad functions, we have 

~Ix "a  I x ~p~ "b  b ~a ab1~_ ~ , h a h ~ 3 ~ ,  h ~ h ~ a ,  h . = g . ~ 7  n b  

~ ~ _ . l x ~ v  ~ a b  ~ " a  ~ b  ~ t z l ,  ~ 
g txv "~- t ~ a . b ,  I , gbL v = h . h ~ r l a b ,  g g . ~  ~ 3 ~  

The quantity ff is not a metric function. For instance, in comparison with 
a l.. l~ l~ bv relation (6), for small cr '~= o'b . . . . .  , we have 

g ~  ~ g.~ + g~g~o-  

We shall describe deviations (7) in the framework of the fiber bundle 
formalism. For every fiber P~ of LX, let us fix some element p ~ X and 
consider the following transformations of  P~: 

P~ = p O - ~ p H ~ G  -~, H~ c G = GL4 (9) 

of  P~ which is an isomorphism of  the fiber bundle LX. 
Transformation (9) yields the following mapping of the cotangent 

bundle t lT *X  = (P x T*) /  G: 

(pG-1  x Gt) /G-> (pH~G-~x G H ~ t ) / G ,  t~ T* (10) 

( p G - ~ x G t ) / G ~ ( p H ~ G - l x G t ) / G = ( p G - ~ x G H ~ t ) / G  (11) 

The mapping (10) is the identity isomorphism of  T * X  considered as the 
GL4 fiber bundle. If  Fix ~ GL4\L, this mapping, however, is not a trivial 
mapping of  the fiber bundle T * X  considered as different L fiber bundles 
A~. Let us assume that 

p E P ) ,  Fix ~ G \L ,  pH~ ~ P~' 

for some h and h'. Morphism (10) then takes the form 

p, : T * X  = (ph x M ) / L  = M~ ~ t(x)  = (pL- '  x L t ) / L  

~ ( p H x  L-~ x L H ; l t ) / L  = t(x) ~ M'~ = (ph 'x  M ) / L =  T * X  

and accompanies the transformation between gravitational fields h and h'. 
The mapping (11) is an isomorphism of  the cotangent bundle T * X  

which, given the reference frame z~(x) = p, is generated by transformations 
of  cotangent spaces by means of  operators H~. If  T * X  is considered as the 
L fiber bundle M h X ,  this mapping can be written in two forms: 

P2 : M~ ~ (pL -1 x L t ) / L ~  (pL -~ x LHx t ) /L  

P~P2: M ~ ( P L - ' •  
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Given a gravitational field h and the corresponding representation Yh, the 
mapping 192 induces the representation mapping 

yh2(t(x)) = yh(p2t(x)) 

In the index form, the mapping Yh2 reads 

yh2: ea?~174162 

-->[zh(x)t-l• Lsy(Hba(x)~'atbQv)/Z2]/L = Hb"(X)r (12) 

This mapping, like Yh, defines the T-matrix representation of cotangent 
vectors on spinor fields q~h. Therefore, deviations 

H b  ~ = a~ +~rb  ~ 

and their superposition or + tr' can be defined. The Dirac operator corre- 
sponding to this representation Yh2 takes the form (8): 

LD = Yh2( dxP')Dlxq~h "= h~a(X)Yh2( tha(x) )Diz~)h 

I-6 a lJ = h~(x)Hba(x)ybD,4h = h , ( x ) y  H ,  (x)D~cb (13) 

Remark that, given a holonomic atlas, the functions H,,V(x) in expression 
(13) do not depend on a gravitational field, that is, gravitational potentials 
h2 and deviations t r f  are independent dynamic variables. 

Deviations (7) and the Dirac operator (8) appear in the gauge theory 
of the translation group (Sardanashvily and Gogberashvily, 1988; Sar- 
danashvily, 1990). We therefore may apply Lagrangians of this theory in 
order to describe fields o-. Note that, to construct a Lagrangian of  deviations 
e of a gravitational field g, one usually uses a familiar geometric Lagrangian 
of  a field g' = g -  e where g is treated as a background field. In the case of  
deviations (7), we can not follow this method because ~ fails to be a true 
metric field. 

Let A X  be the fiber bundle of affine repers over a space-time manifold 
X 4. It is the principal fiber bundle with the affine structure group A(4, R). 
For the sake of simplicity, A X  is believed to be trivial. Provide the total 
space Q = t IAX of A X  with coordinates {x ~, u~, S~"}. Here x ~ are coordin- 
ates in X 4, u ~ are parameters of the translation subgroup T4 of  A(4, ~), 
and So ~ are coordinates of the reper {Sty} with respect to the holonomic 
reper {0,}, where {t,} is the fixed basis for T4, and S is an element of the 
subgroup GL4. 

Remark that {x ", u"  = S,"u ~} are coordinates in the total space of the 
affine tangent bundle AT)(. 

Let a general affine connection be in AX. Given the above-mentioned 
coordinates, its connection form A and the corresponding horizontal fields 
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HA r on Q read 

A = (S-')~a(dSb ~ + F,.~ ~ (X)Sb ~ dx~')Ia b + (du ~ + B ~ ( x )  dx") T~ 
(14) 

~. .A = ~ . . ( x ) O ~ A  = . c ~ ( x ) ( o / a x .  _ B ~ ( x ) a / o u  ~ - r~..  ~ (X)$b ~ a/aSb ~) 

where I~ b and T~ are generators of  the group A(4, R) and F~. ~ are coefficients 
of  a linear connection. In affine gauge theories, coefficients 

B .  = S a B .  

of  the soldering form ~ ~ X 4 B .  dx on are treated as a gauge field of  the 
translation group T4. This tensor field defines the fiber-to-fiber morphism 
of  tangent and cotangent bundles. 

Let us consider the following mapping  p of  the space Q onto the total 
space P of  the fiber bundle L X  at points S.~u ~ = u~(x): 

{x ~', u ~, Sot} .> { ~ ( x  ~, u~(x) - So~u ~, 1), 0, S~" } = {x ", 0, S. ~ } 

Here ~:(x, u, s) is the geodesic defined by the linear connection F through 
the point x in the direction u, and u(x)  is some section of  the fiber bundle 
AT)(. The tangent map  p. of  the tangent bundle TQ over Q onto the tangent 
bundle TP over P transforms horizontal fields (14) on Q into fields 

7rH = "r" ( X ) (  6 t~v "t'- D A  u~ ( x )  )[ O/ OX~" - F~,=E (x)Sb~ e ] 

Ix p A v H 
= = ,  ( x ) o .  (15) ~" ( x ) ( 8 .  + D . u  (x))O~ . "H 

H on P. Here, by O~, we denote the horizontal lift of  0~, with respect to a 
linear connection, and 

A e r e ce e e e D~,u (x)=Ogu ( x ) + r . ~  u ( x ) + B .  ( x ) = H .  ( x ) - 6 . - e - o - .  (x) (16) 

is the covariant derivative of  fields u(x).  Remark  that fields (15) are horizon- 
tal with respect to the linear connection F. A field u(x) ,  however, is always 
removed by gauge transformations.  So only its covariant derivative (16) 
and fields cr can make physical sense. 

Note that, in affine gauge theories, one usually considers the mapping  

/3: 

of Q onto P. At points 

we have/3  = p, but 

{x" ,  u ~, &~} -~  {x" ,  O, & " }  

S j u  ~ = u ~(x) 

/3.r  "A = < ( x ) [ o / o x " - r ~ / & ~  ~] # p . r  "A 

Let r be some matter  field on X 4 and fe~ be the corresponding 
equivariant function on t l ( L X  x A). We shall say that ~b is defined on the 
deformed manifold X 4 if differentiation of r is given by the expression 

( / 90 ) ( r )  = (dfe~)(~") ~ ~ H = (dfe~)(z ( x ) H .  ( x )O. )  
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where a .  H is the horizontal lift of  0~ with respect to a connection in A. It 
follows, that, in the field theory, deformation of a space-time manifold can 
be described by replacement of  familiar covariant derivatives D~, in the 
exterior differential d x " D .  by the quantities 

For instance, the Dirac operator on the deformed manifold takes the form 
(13), and Lagrangians of  gravitational and gauge fields are constructed by 
means of the modified curvature tensor 

and the modified strength 

H l x e  l,..l 13D ab 

H~~ F~ 
O0 If  one requires that the component  T(~  of  a metric energy-momentum 

tensor of  fields cr is positive, the Lagrangian of these fields can be chosen 
in the form 

L(o~)--2L,-l-~,. -- . - v a 2 t ~ . ~ t t  ~ - z r  ) - /zo- .  %. +ho'~ o'. ] 

F ~ . . =Dt .~G]  ~, al->0, a2---0, t~>0,  ;t<�88 

For instance, we obtain the following equation for a free weak field o': 

4a2 O~ (oJ.~,, ,  + w . ~ . .  - w~.,~,) + 2a loJ~[~ ,~  ~ - / x o j . ~  = 0 ( 1 7 )  

al/~-l(A --/x)[~'/.~ De-e,.~]+2a~w,~(~,.) ~ - / z e ~  + hattie = 0 (18) 

1 a 1 e.v = ~cr(.~), e=~r~ , o9.~ - ~o'[.u] 

If  one takes the natural solution o) = 0 of equation (17), equation (18) can 
be written in the form 

_/z-_~h 
e . , , -  3l .L ( r l . , , e -3a l l z - le . , , )  

(19) 

D e + m 2 e = O  ' mZ - / z ( / z -  4A) 
3a l ( /Z-A)  

This equation admits plane wave solutions 

d( el.. = rl.~-~ p~ . 4 h  p.p~'~ ~p~ p2= m e (20) I~-,~ p2 ] a ( p )  e , 

Equation (19) and solutions (20) look promising in order to quantize the 
deviations (7) of a gravitational field. 
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Thus, we can say that transformation P2 deforms the fibers of the 
cotangent bundle and thereby violates the identity of T*X = M h x  with the 
Minkowski space fiber bundle AM associated with the spinor bundle Ah. In 
other words, the deviations (7) destroy the correlation of the Dirac fermion 
matter with the space-time geometric arena. 
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